

MICROFICHE N

39029

Mapublique Tunisienne

MINISTERE DE L'AGRICULTURE

CENTRE NATIONAL DE

DOCUMENTATION AGRICOLE

TUNIS

الخنعون مية النونسئية

المركزالقومي للترثيق الفلاحي وسس

MINISTERE DE L'AGRICULTURE

Direction des Remources en Eau et en Sol.
Division des SOLS

PARCELLE D'ESSAI DE BOU SALEM POUR L'IRRIGATION D'APPOINT AVEC L'EAU DE LA MEDIERDA

Par K: BELKHODIA, Ingénieur Principal Pédalogue

F - S 77

ARCELLE D'ESSAI DE BOU SALEM

pour l'irrigation d'appoint avec l'eau de la Medjerda

ETUDE DES SOLS

Cette note a pour objet de décrire l'état initial de la parcelle expérimentale de Bou-Salem avant son irrigation, de sorte que les résultats analytiques qui y sont inclus serviront de base pour juger de l'évolution du périmètre.

had not a problem to the remains missinglish to dopen be personable on no

Le but de l'expérimentation est de suivre l'évolution du sol sous l'assolement prévu dans la région (Betterave sucrière, blé tendre, fourrages) avec des irrigations de complément par les eaux de la Medjerda. Comme celles-ci sont salées (voir annexe salure des eaux) cette expérimentation doit pouvoir évaluer les risques de salinisation du sol et son effet sur les cultures d'autant plus que les sols présentent déjà des caractères de salure et d'alcalinisation.

pelore plans not a real filters with the contract of the contr

LES SOLS DU PERTISEME EXPERIMENTAL :

Le périmètre expérimental est situé sur la terrasse récente de la Medjerda, néanmoins elle semble fossiliser une terrasse plus ancienne dont les sols de couleur plus foncée apparaissent sur la coupe de l'Oued Medjerda.

Les sols présentant une grande homogénéité dans la parcelle et ne varient que par quelques détails de texture des horizons, leur profondeur, et des caractères chimiques que nous étudierons plus loin.

Du point de vue morphologique, nous donnons en exemple le profil suivant qui peut être considéré représentatif de la parcelle.

Profil A R 3 I

Observé le I° Novembre 1967 Chaumes de céréales.

- 0 15 cm : Beige gris (TO YR 5/4) argileux structure large en blocs prismatiques - compact - porosité faible - quelques racines de blé débris de chaume et racines dans les fentes.
 - 15 50 cm : Beige gris (IO TR 5/4) argileux structure prismatique large cohésion et consistence fortes entre les blocs élèments à structure polyédrique émoussé, fine porosité faible nombreuse racines files de blé.
 - 30 100cm : Gris plus foncé légèrement brunâtre argileux structure massive faiblement fissurée domant des prismes de 10 à 25 cm. de large à sous structure cubique avec tendance à former des plaquettes gauchies à faces lissées porosité mulle racines rares.
 - 100 130cm : Brun gris marmorisé argideux frais structure prismatique à cubique à faces lissées porosité faible racines rares.
 - 130 170cm: Brun gris marmorisé argileux frais structure fondue pseudogley radiculaire le long de certains pores - quelques pseudomycéliums gypso-salins et petits amas calcaires.
 - 170 200cm : Brun gris bigarré argileux frais structure fondue nombreux pseudomycéliums blancs aplatis gypso-salins pseudogley radiculaire plus net petites taches calcaires blanc sale.

200 - 220 cm : Brun gris bigarré-argileux - à pseudomycélius blancs gypso salins.

220 - 250 cm : Brun gris bigarré-argileux à pseudomycélium blanc gypso salins et pseudogley plus net.

(Les deux derniers horizons ont été observés à la sonde).

L'observation morphologique des profils fait apparaître deux sols apparemment superposés se différenciant par la couleur, le sol enterré étant légèrement plus foncé et marqué par une hydromorphie qui a laissé des traces de pseudogley encore nettes.

Résultats analytiques du profil A R 3 I

Profon-	1			and 5-3*	1-1		-		1 (Calcaire	1	Calcaire	Gypse	
duer cm.	! [Argile	! Idmon	1	ables trèe fins		bles	1 1	Sables grossiers	1	Total %	!	Actif %	CaSO ₄	
	T	T	T		T		T		1	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	T	T4 5	! Traces	-
0 - 15	1 43,3	1 33,15	1	7	1	5	!	I	.1	34,6	1	14,5	-	
15 - 30	! 5I,I	1 36,2	1	6	1	6	1	I	!	33,3	1	14,54	!Traces	
30 - IOO	1 52,15		1	5	1	4	1	Traces	1	35	1	13,5	!Traces	1
		! 33		3	1	2	1	n	1	34,6	1	20,0	1 Traces	1
1100 - 130	1 61,5			T	1	т	1	n	1	25,0	1	20	!Traces	-
1130 - 170	! 65	! 33				2		97	1	25,5	1	13,5	!Traces	1
1170 - 200	63,5	! 23,5	1	4	1	2	1					21,5	1 0,10	1
1200 - 220	1 62,5	1 24	1	5	1	4	1	n	1	29,6		1		
1220 - 225	1 67,5	1 27,5	1	3	1	I	1	27	1	34,2	1	23,5	Traces	
	1	1	1		1		1	1918 CH 1915	1		1		1	_!

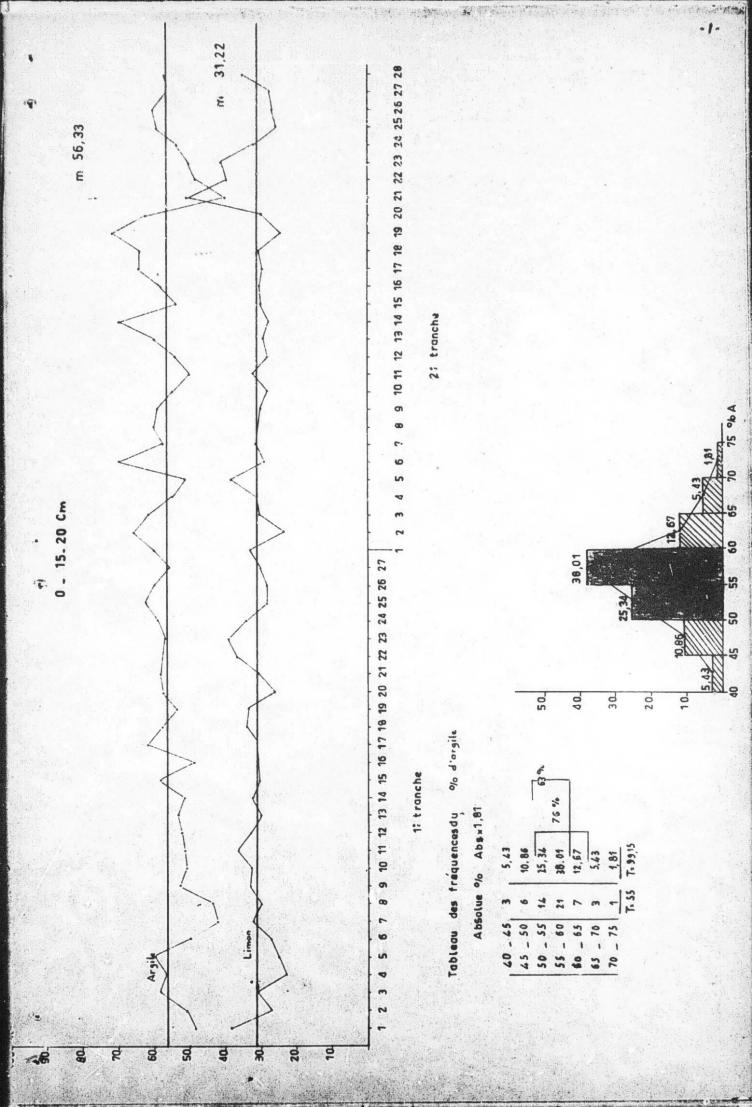
.../...

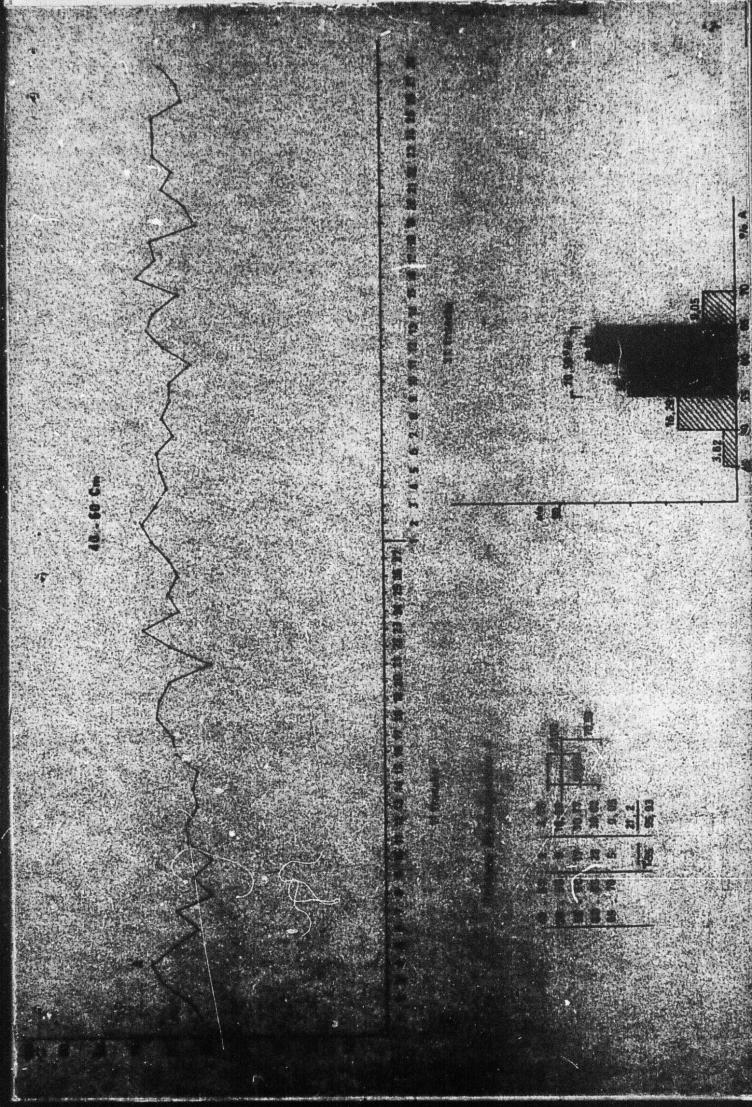
A. 1468	0 - 15, 15 - 30, 30 - 100, 100 - 130, 170 - 200, 170 - 200, 220 - 220, 220 - 250,	Profor- deur:	
in in a second second		'H	1
aga an isa - Esta - Saar	8,56 8,56 8,56 8,56		1
dd afe y chees y celeb	44406000	Satura- tion de la pate %	1
and the second	888422	名をこり	1
	1,75 1,75 1,75 1,75 1,75 1,75 1,75 1,75	Conduc tivité mahos	-
ing position of the second			1
	4,1 7,7 11,75 11,75 11,75 11,75 124,6 24,6 32,9	CI	
I) compared to the second seco			
Pegranda การการกระบาน	2,0 2,0 2,0 2,0 2,0 15	F CO F	0
	23,5 1,85 2,6 2,6 27,5 28,5	ration.	,
	1 1,15 1,05 1,05 1,05 1,05 1,05 1,05 1,0	solubles meq/l d'extrait de sau- ration.	
	Deg. Deg. Deg. Deg. Deg. Deg. Deg. Deg.	6	+
	27,05 27,05 27,0 27,0 27,5	Na Barr	a cantu
40	н . нныцы		
	19,17 17,23 13,02 11,59 11,59 11,53	Ca	Complexe
	Dark and and and and and and and and and	THE STATE OF	exe
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		bee
750	0,72 0,67 0,32 0,32 0,4 0,27	Z terre	absertant on
en e	0,51 0,55 1,55 3,59 3,42		m meq/100 g de
-11-	N N N N N N		00
	27,3	1-3	ep S
	1,28 2,44 7,07 14,41 13,62 14,02	\$	
1988 An Strain and A		= = =	
(20 cm), 13 ff 1921 22 4	日 日 日 日 日 5 8 8 8 8 8 8 8		
Exelected 40 A.A.	8 8 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	5	
) <u> </u>	
	1 5,6 15,6 15,6	1	

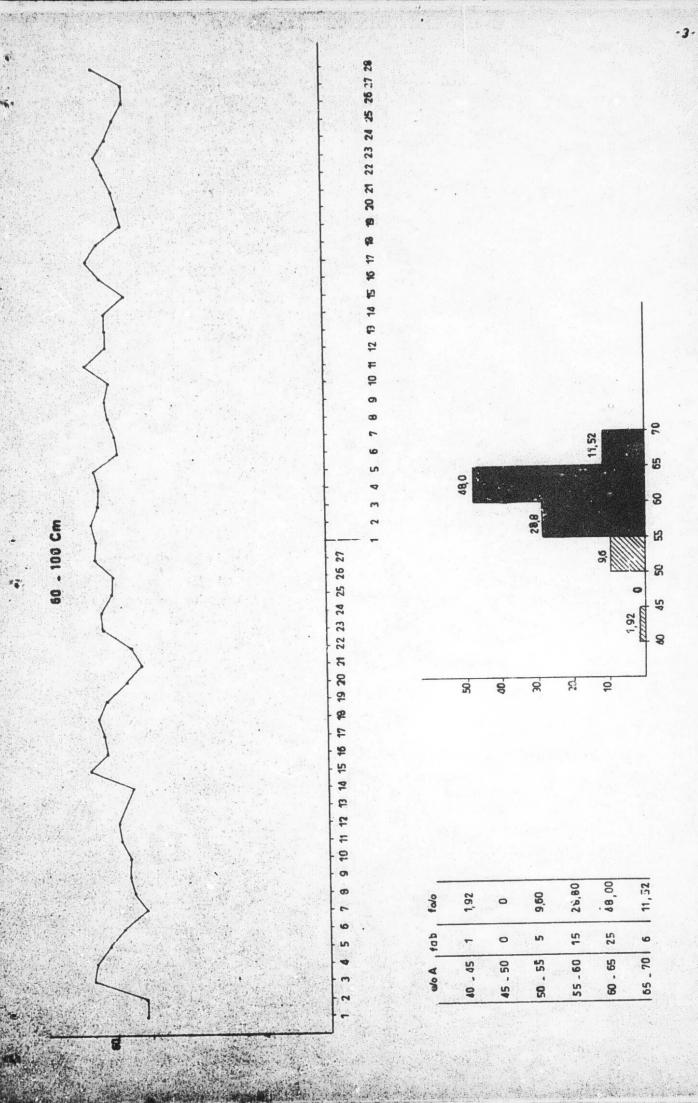
Au total 56 profils ont été creusés décrits et analysés.

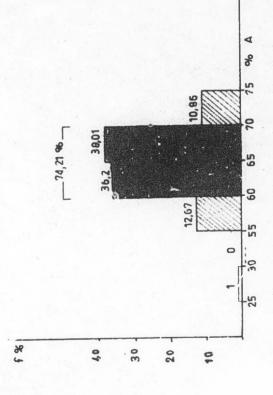
Si dans l'ensemble les profils se ressemblent, les différences observées se sont montres difficiles à cartographier. Aussi s'agissant d'une variabilité dans l'espace, la moyenne des chiffres n'a t-elle qu'une signification réduite et nous nous sommes plutôt attaché à exprimer cette variabilité par les fréquences.

La texture :


En génèral la texture est fine, avec cependant une variation dans les profils, désordonnée dans le sens horizontal s'agissant d'alluvions, mais plus régulière dans le sens vertical où on observe une augmentation de l'argile (tableau 1) vers la profondeur.


Moyennes par horizon de l'argile (0 - 2 microns) et du limon (2 à 20 microns)


1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Argile	l Idmon
0 - 20 cm 1	56,33	1 31,22
20 - 40 cm 1	57,27	1 1 29,95
40 - 60 cm 1	59,85	1 28,10
60 - 100 cm 1	60,68	29,91
100 - 130 cm	64,44	30,35
130 - 170 cm	65,36	30,93
170 - 200 cm	62,07	29,05


Tableau I

Les tableaux de fréquence et les graphiques illustrent la variabilité de texture par horizon, c'est ainsi que dans les horizons de surface (0 à 15 -20 cm), 63 % des sols ont un taux d'argile compris entre 50 et 60 % et pour les horizons de 40 à 60 cm 70 % ont un taux compris entre 55 et 65 % d'argile.

10,86

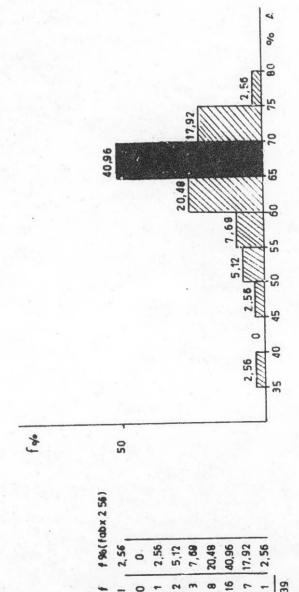
7,55

70 75

38,01

21

65 _ 70

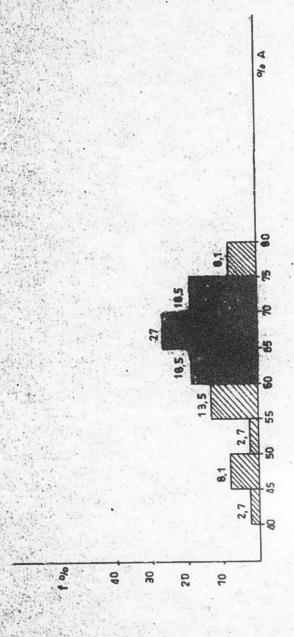

36,2

99 - 09

25 _ 60

1.81

f absolue


f 0/0

45_50 50_55

35-40

55.60

60-65 65-70 70-75 75-80 - 5 -

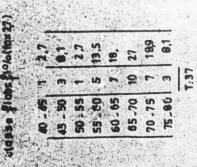
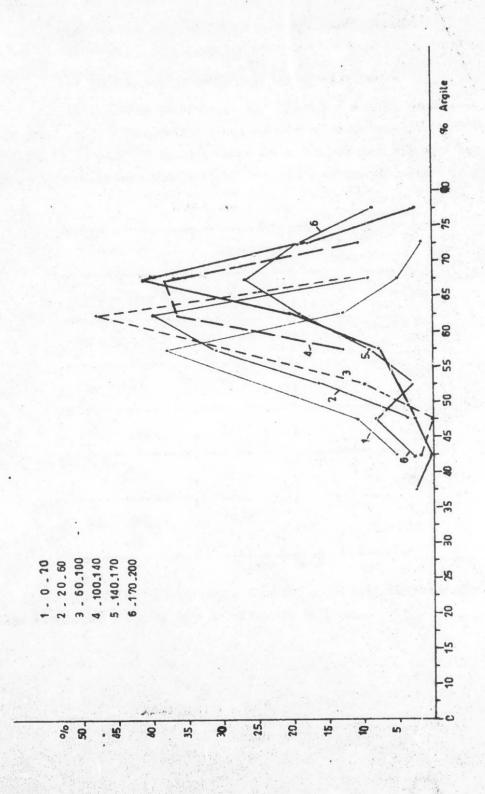
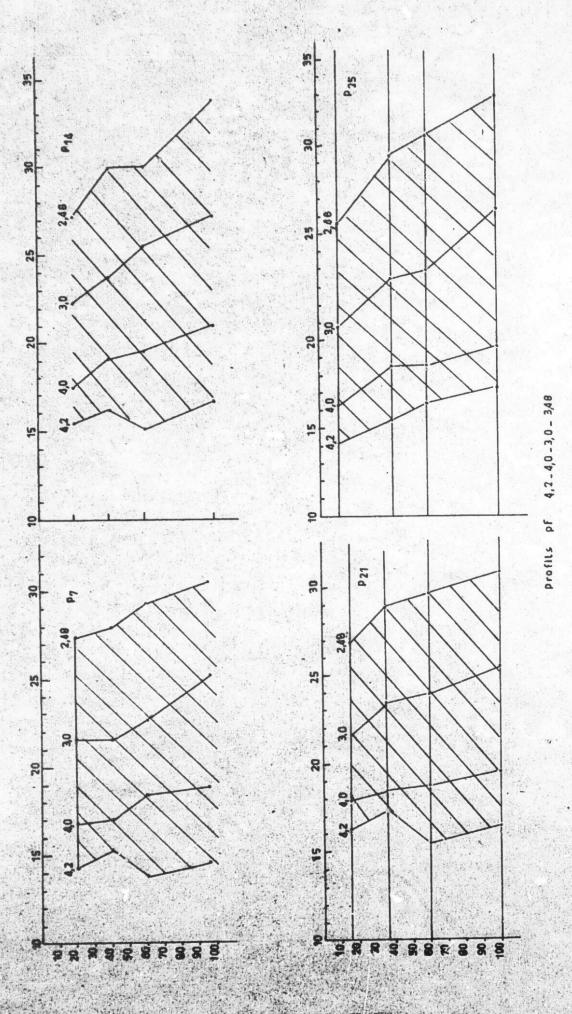



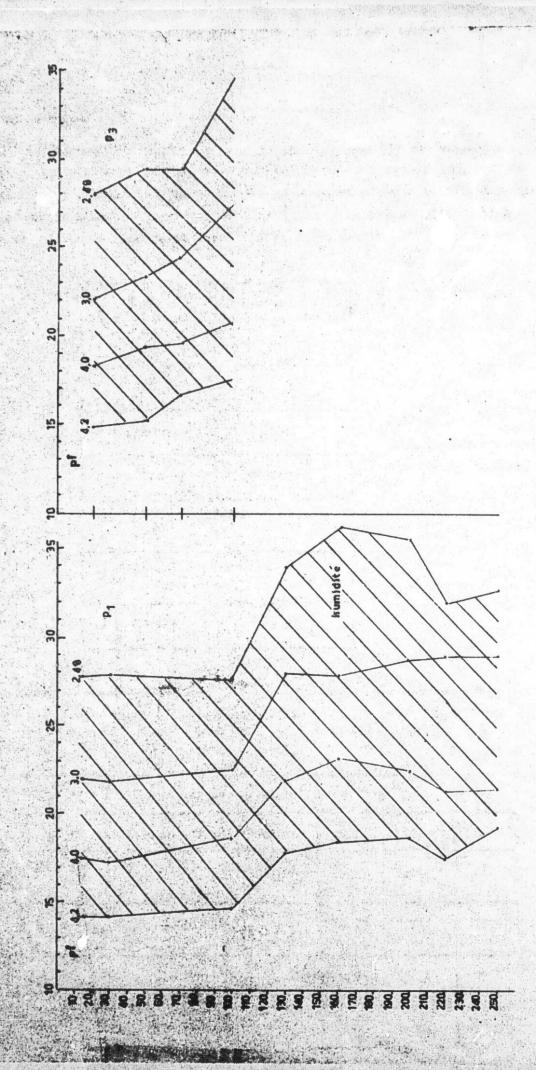
Tableau des fréquences

Capacité utile pour l'eau :

Les mesures ont été faites pour six profils complets (I - 3 - 7 - 14 - 2I - 25) aux différentes valeurs de pF (4,2 - 4,0 - 3,0 et 2,48)

Le tableau Nº 3 consigne les résultats obtenus.


Si on estime la capacité pour l'eau (ou réserve facilement utilisable rfu.) égale à la quantité d'eau retenue entre la capacité de rétention (pF 2,48) et le point de flétrissement (pF = 4,2) on peut calculer pour les différents profils analysée la capacité utile pour chaque horison (t 4)42


Horizon	Moyenne	Nombre
0 - 15 - 20	12,35	1 6
15 - 30 (20-40)	13,38	1 6
60 - 100	16,1	1 5
100 - 130	14,5	
130 - 170	17,8	1
170 - 200	16,9	1
	Tables	1 012

L'augmentation de la capacité utile avec la profondeur confirme le rôle de l'argile dans la rétention de l'eau.

Tableau 3

d'ordre No	Profil	No Echantillon	Profon- deur	pF 4,2	pF 4,0	pF 3,0	pF 2,48
ī	A.R 31	SP II2	0 - 15	14,I	17,5	22,0	27,8
2		CEE 756	15 - 30	14,1	17,2	21,9	27,9
3		TC 240	30 - 100	14,6	18,5	22,5	27,5
		L 57	100 - 130	17,9	22,0	28,0	34,6
5		SP 219	130 - 170	18,4	23,2	27,9	36,2
6		SP 704	180 - 200	18,7	22,5	28,9	35,6
7		1933	200 - 220	17,5	21,3	29,0	31,9
8		2135	220 - 250	19,2	21,5	29,0	32,6
16	AIRIP2	SP 338	0 - 20	14,9	18,2	22,0	28,0
17		8 91	20 ÷ 40	15,1	19,4	23,2	29,4
18		1856	40 - 60	16,7	19,6	24,4	29,4
19		Z 78	60 - 100	17,4	20,9	27,4	34,9
44	ATRAP2	1835	0 - 20	14,I	16,9	21,6	27,4
45		SP 208	20 - 40	15,1	17,0	21,6	28,0
46	1 . A. T.	SP 155	40 - 60	13,8	18,4	22,7	29,2
47		SP 116	60 - 95	14,7	18,9	25,I	30,4
87	A_B_P_I	58 R	0 - 20	15,4	17,5	22,3	27,2
88	1 2 1 1	743	20 - 40	16,1	19,1	23,8	30,0
89	i	80 R	40 - 60	15,1	19,6	25,6	30,0
90		451	60 - 100	16,7	21,0	27,1	33,9
128	A2R2PI	V 103	0 - 15	16,3	17,9	21,7	26,9
120	1	B 8 2	10 - 35	17,3	18,4	23,5	28,9
130		N 16	35 - 60	15,3	18,8	24,0	29,7
131	1	CEE 9I	60 - 100	16,5	19,5	25,5	30,9
153	AR3P2	CEE 597	0 - 10	14,2	16,2	20,9	25,7
154	1	CEE 53I	10 - 40	15,5	18,6	23,5	29,3
155		38 R	40 - 60	16,3	18,6	23,9	30,5
156		326	60 - 100	17,1	19,6	26,4	32,8

La salinité :

a) La conductivité élèctrique.

La conductivité élèctrique exprimée en mmhos/cm à 25° est mesurée sur l'artrait de pâte saturé. Elle montre que la salure est très faible à mulle dans les horimons supérieurs, mais amorce une élèvation assez nette et brutale à partir de I m. comme le montre le graphique de répartition de la conductivité de quelques sols et le tableau des moyennes et des fréquences (55 profils).

Horison	1	Conductivité
0 - 20 cm	1	1,05
20 - 40 cm	1	0,66
40 - 60 cm	1 1	5 , II
60 - 100 cm	1	1,85
100 - 130 cm	1	4,28
130 - 170 cm	!	7,29
170 - 200 cm	!	6,89

Tableau des moyennes des conductivités per horizon.

Profon- deur Conduc- tivité.	0 - 20 cm	1 20-40 1 cm	40 - 60 1 cma	1 60-I00 1 cm	100-130 1 cm 140		1 cm
0 = I t	47,06	1 83,26	1 53,65	1 17,28	1 0	1 0	1 0
I - 2	50,68	1 16,29	38,85	1 48,0	11,1	0	1 0
2 - 4 ! mahos !	1,81	! !	1 5,55 1	34,59	1 35,15 1	5,64	l I
4 = 6			1,85		35,15	1,3,74	1 16,5
6 - 8 1		1		1	1 18,5	1 60,16	1 38,5
8 - 10		1	1	1	1	30,08	35,0
! mihos ! ! ! !\sblest: de			1	1	l es de conf		1

La salinitá :

a) La conductivité élèctrique.

La conductivité élèctrique exprimée en mmhos/cm à 25° est mesurée sur l'extrait de pâte saturé. Elle montre que la salure est très faible à nulle dans les horisons supérieurs, mais amorce une élèvation assez nette et brutale à partir de I m. comme le montre le graphique de répartition de la conductivité de quelques sols et le tableau des moyennes et des fréquences (55 profils).

Horison	Conductivité
0 - 20 cm	l 1,05
20 - 40 cm	0,66
40 - 60 cm	1 5,II
60 - 100 cm	1 I,85
100 - 130 cm	l 4,28
130 - 170 cm	1 7,29
170 - 200 cm	1 6,89

Tableau des moyennes des conductivités par horizon.

Profon- deur Conductivité.	0 - 20 cms		40 - 60 1 cm	1 60-100 1 cm	100-130 1 cm 140		1 cm 1
O = I	47,06	1 83,26	1 53,65	1 17,28	1 0	0	1 0
I - 2	50,68	16,29	38,85	48,0	1 11,1	0	1 0
2 - 4 1		1	5,55	! 34,58 !	1 35,15 1	5,64	! II
4 - 6			1,85		35,15	3,74	1 16,5
6 - 8		1	i de la		1 18,5	1 60,16	1 58,5
8 - 70		1		1	1	¹ 30,08	1 33,0

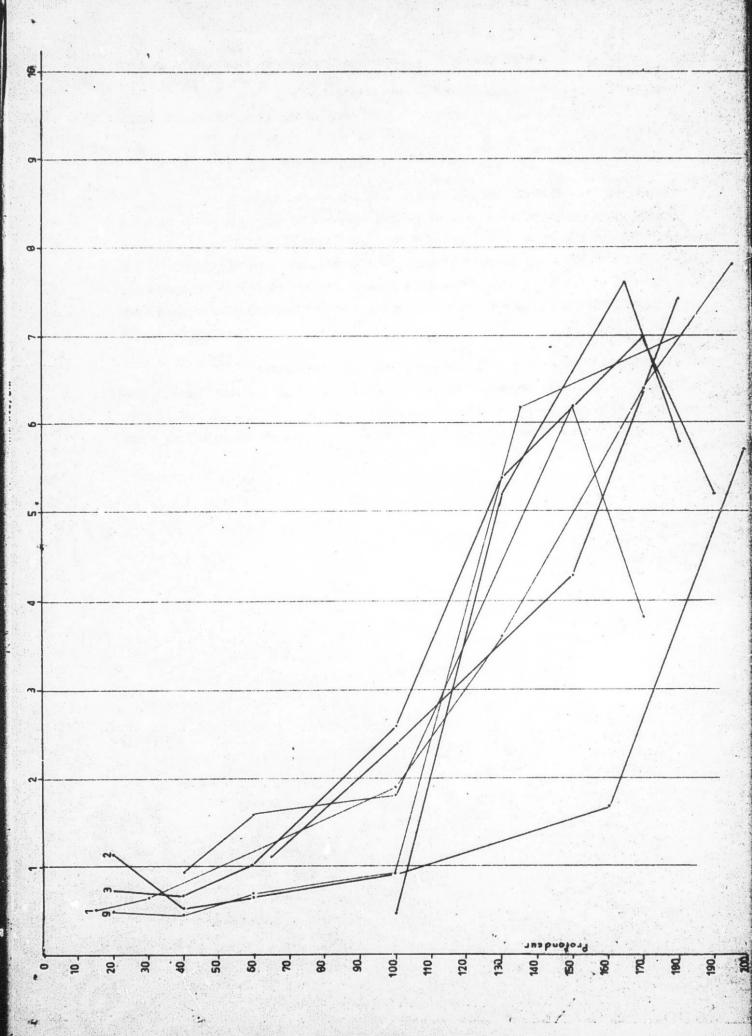


Tableau des fréquences en % par harisons et classes de conductivité

La brasque élèvation de malimité vers les 100 cm. parait en relation avec l'apparation du sel foncé et hydrosorphe enterrés

parts average) Les este eclubles apar parter de les directedadants pro-

trades.

Alors que le sol présente en surface une salinité très faible à mille, c'est à partir de I m. saviron (au niveau du sol enterré) qu'on peut noter une accumulation de sels. Ils sont principalement constitués de chlorures (et de sulfates), de réchiem, calcium et magnesium (cités par ordre d'importance). Les bicar, mates (CO_R) sont faiblement représentés dans les horisons superficiels mis peuvent attendre des teux relativement élevés (5 meq/1) dans les horisons superficiels moyens et profonds.

La salimité dans tous les sols affecte une allure descendante sontwant un lessivage vers les couches profondes probablement sous l'influsace des esux pluviales. Les courbes des chlorures, et les graphiques représentant les cations et les anions de deux profils illustrent cette distribution.

Les militares (1875) de la propieta de 1575 de 1875 de 1855 de

e la seriori de mainte de la proposition del la proposition de la proposition de la proposition de la proposition del la proposition de la

liber year 25 or Chie la sayone par errison efficill agent.

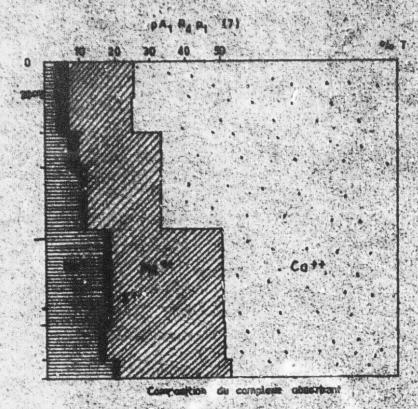
Androne :		Wilensons who	, isisaniid , isisaniid Mere
0 + 10 cc)		i v, ix	1 2.9
20 m 20 m		3 1 977 5 5	
AC on fall out			
50 - 10 0	71,7		17,4
N - Tolken	77.8	i - 125.5	100
ю - m с.	21	12,0	
10 % 2100 see			

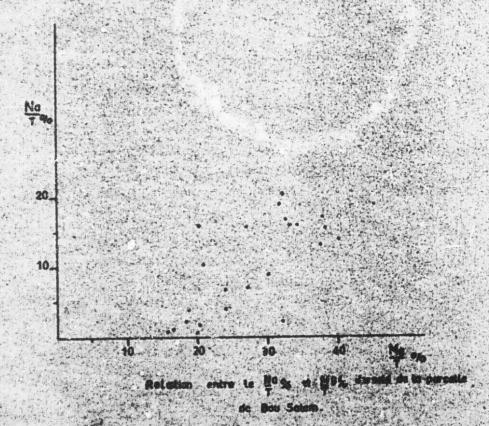
Le complexe absorbant :

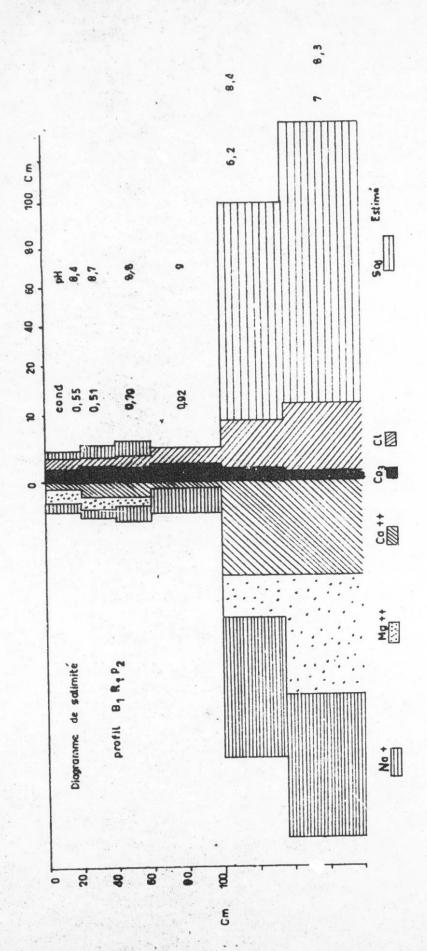
Le complexe absorbant est fortement saturé par le calcium qui domine les autres cations échangeables surtout dans les horisons superficiels des sols. En profondeur le pourcentage du sodium et surtout du magnesium sugmente nettement, su point qu'on puisse parler d'une forte alcalinisation profonde.

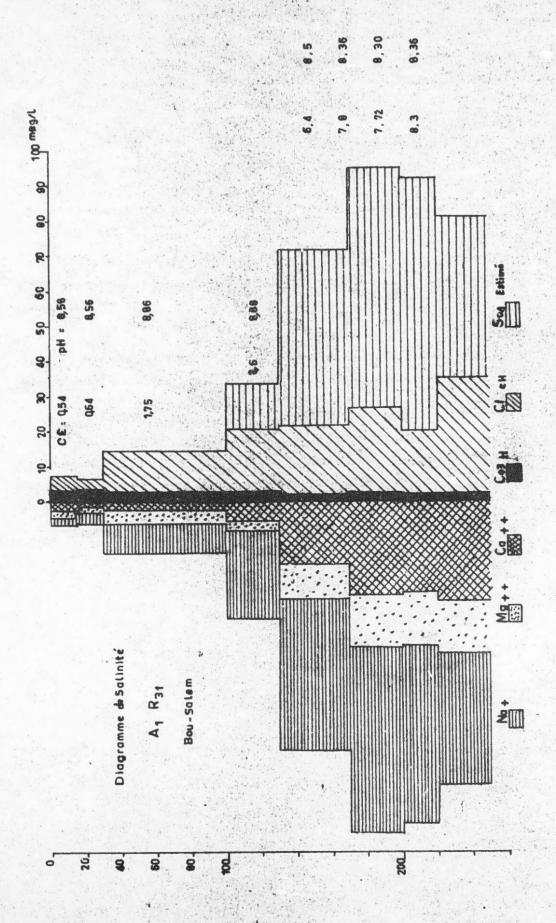
Le shema (#4 44) représente la composition des cations échangeables dans un profil ($A_*R_Ap^*$) exprimés en % de T.

Le potassium échangeable présente des valeurs assez élevées en surface et diminue en profondeur. La richesse en potassium semble due aux apports de la fumure minérale.

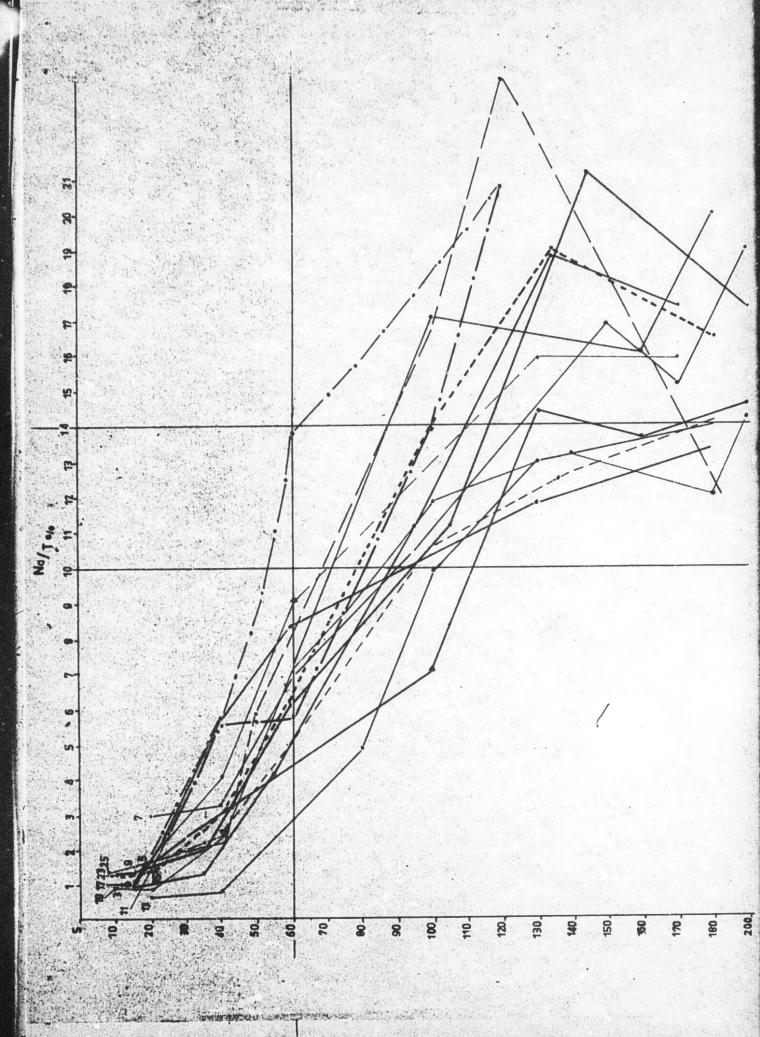

Le magnesium tout en ayant des valeurs assez élevées dans les horizons superficiels, présente une nette augmentation des les horizons profonds. Cette augmentation pourrait être la conséquence de l'hydromorphie dont atteste le pseudogley et le noircissement, et pourrait accompagner l'alcalinisation. L'augmentation de Mg échangeable accompagne souvant dans ces sols celle du Na échangeable comme le montre le graphique (Nº 41).


Les valeurs du Mg échangeables varient de 15 % à 20 % dans les horisons supérieurs sains (sans salure ni hydromorphie) pour atteindre des valeurs variant entre 30 et 46 % de T en profondeur.


Le sodium échangeable présente des valeurs faibles en surface (0 à 40 cm) s'élevant graduellement vers la profondeur.


Ainsi pour 25 profils la moyenne par horizon s'établi ainsi.

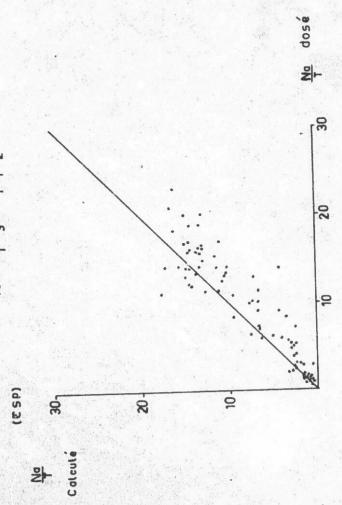
Horizons	Na %	! Valeur la plus !	Valeur la plus élevée
0 - 20 cm 1	1,6	1 0,71 1	2,9
20 - 40 cm	2,8	0,77	4
40 - 60 cm	8	4,1	20
60 - 100 cm 1	I2,2	i 9,9 I	17,4
100 - 140 ca	15,5	12,5	23,9
140 - 170 cm	15, 8	1 11)8	20
170 - 200 cm	109	16	20,7

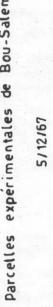

Le variation du rapport Na % en fonction de la conductivité de l'extrait de saturation (fig. W. 2 4 4) montre qu'il paut exister des échantillons représentant des horizons où la conductivité est faible et l'alcalinisation (rapport Na %) faible.

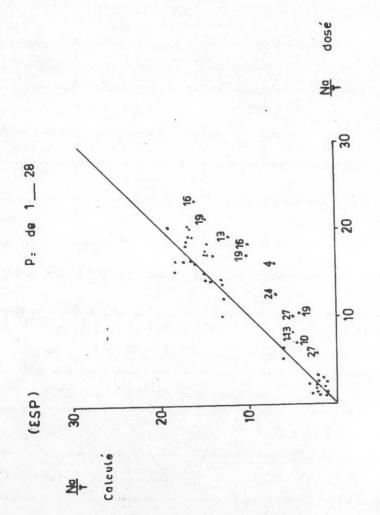
- La conductivité faible (0,5 à 2 mmhos) et l'alcalimisation forts (Ne % à 17 %) (horison à alcali non salé).
- La conductivité forte et l'alcalinisation forte (horizon à alcali et salés.

Dans le cas des sols de la parcelle, la salure sesurée par la conductivité élèctrique semble insuffisante pour nous renseigner sur l'état du complexe absorbant.

Le S.A.R. (taux d'absorption du sodium) et l'E.S.P. (Ma calculé) tirés à partir de la composition cationique de la solution extraite de la pâte saturée semblent mieux renseigner sur l'état du complexe absorbant.


Cela confirme que o'est surtout la composition cationique de la solution du sol qui importe plus que sa concentration, d'autant plus que nous avons probablement affaire à un sol enterré qui hérite des caractères physico-chimiques d'hydromorphie et halomorphie plus importantes autrefois.

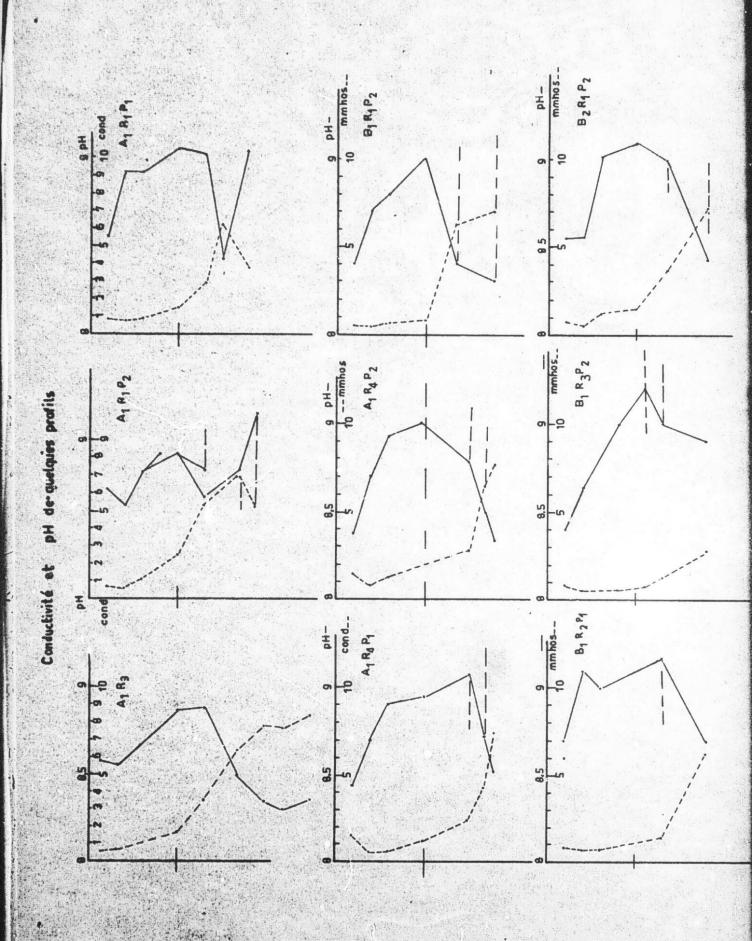

Parcelles expérimentales de Bou-Salem I

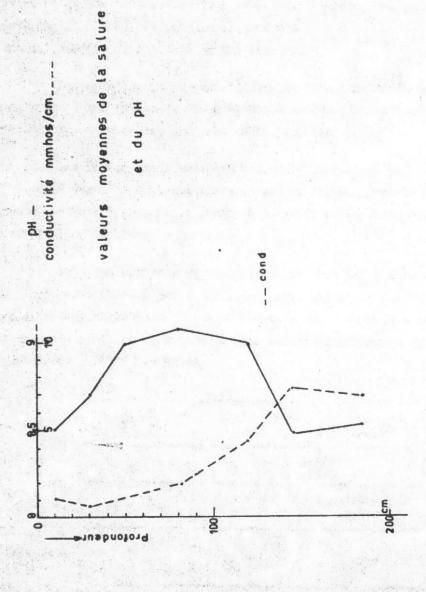

24/2/68

PL AIR3-AIRIP2

parcelles expérimentales de Bou-SalemI

Le pl


Le pil montre une grande variabilité, quoique toutes sont élevées dépassant 6, beaucoup dépassant 8,5 et certains atteignent 9.


Les valours moyennes sont consignées dans le tableau suivent.

Bordstein	pil soyes	Prints
0 ~ 20 1	8,5	55
20 - 40	8,69	55
40 = 60 = 70 1	8,99 ¹	. 54
60 - 100 1	9,07	52
100 - 140 1	- 8 , 9 1	2
140 - 170	8,48	55
170 - 200	8,52	22

Les fréquences s'établissent ainsi pour les différents horizons.

STATE OF THE PARTY		1 018	l ca	1 000	100-140 cm	COR.	1 .
8,0 - 8,31	19,91	(SAME)中心的位置的数据,11年1月1日 (11年1月日)			1 0 1		The state of the s
9,3 - 8,5	36,2	14,58	3,7	0	7,68	42,78	37,32
8,5 - 8,7	72,59	43,44	11,1	1,92	13,44	5,58	9,08
9,7 - 8,9	7,42	21,72	27,75	21,12	46,08	14,88	13,62
9-9,1,	0	3,62	20,35	26,48	17,28	1,86	9,08
3-93	. 0	7,24	20,35	26,48	7,68	0	4,54
,3 - 9, 5 ,	1,01	3,60	Est	7,68	5,76	5,72	, 0
.5 - 9,5,	1,00	0	3,7	11,52	1,92	0	

Le variation du pil dens le profile appareit inverse de la salure desse les harisons profonds (à partir de 80 à 100 cm) mais plus irrégulière dans les horisons superficiels et moyens comes le montrent les graphiques (MFSS-647).

La relation entre le pH et la salure (exprisée en conductivité) du graphique (*** ***) montre deux familles d'échantillons qui se différencient par leur teux d'alcalisation : les échantillons ch (*** 10 %) montrent une élèvation du pH à mesure que le teux de salinité baisse, les échantillons non à alcali (*** 10 %), et pour le plupart peu ou non salés, ne sont pas influencés par la présence de salinité ou son absence.

La variation du pH avec le taux de bicarbonates (H Co,) solubles semble indiquer une influence des bicarbonates dans l'élèvation du pH indépendament du <u>Ha</u> dans le cas des sols de la parcelle.

Les intéractions sublent donc multiples et on peut les régumer ainsi ; le pli des sols à alcali profonds est en liaison avec le taux de bicarbountes solubles qui penvent se former à la suite de la diminution de la salinité et par hydrelyse de l'argile sodique.

Dans les horisons supérieurs qui ne sont pas à alcali (Ma ~ 10 %) le pli n'est pas influencé par la salinité, mais par l'sugmentation du taux de hicarbonates solubles. Comme ils sont riches en Mg échangeable il est possible qu'il puices y avoir la formation de bicarbonate de magnesium qui a pour effet d'sugmenter le pH (RUELLAN 1964).

<u>Ha</u> %	Conductivité	1 (1/2,5)	
At 510c* 20 4	0-2	8,4 - 9	
10 13	0 - 4 4 - 8	8,8 - 9,5 8,2 - 8,7	
18 18 18 18 18 18 18 18 18 18 18 18 18 1	3 - 5	9 - 9,25	

La obviolate Light services for following actions of and an expedition for an in-

to in since Se l'ess of

1:12:4 11:4

recognist interiors on adulting and the LA The

La structure du sol est du type polyédrique en surface, asses grossière, parfois s'agglosérant en blocs ressemblant à des pavés. Le fundillement de la surface est important en été.

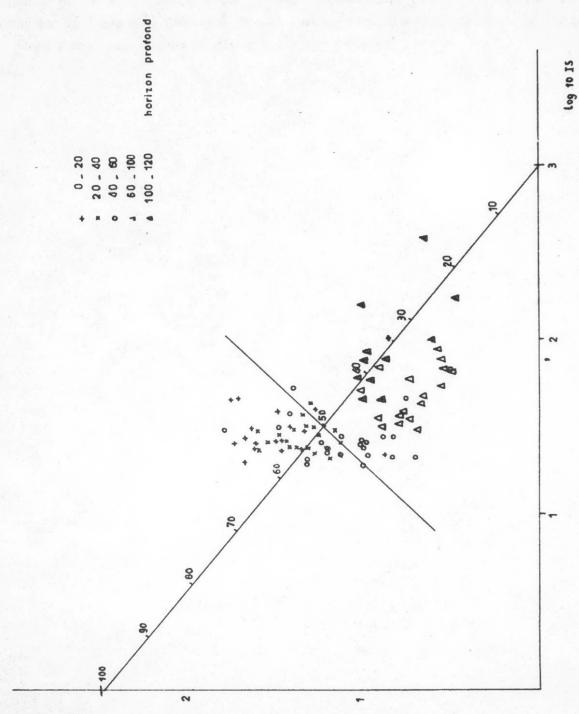
para les crans principales como ligito de l'alcolidación el con con conte con

A soyemme profondeur la structure est graculèrement prismatique, parfois se débitant en oubes et plaquettes à faces lissées, typique des sols verbiques à teriure fins.

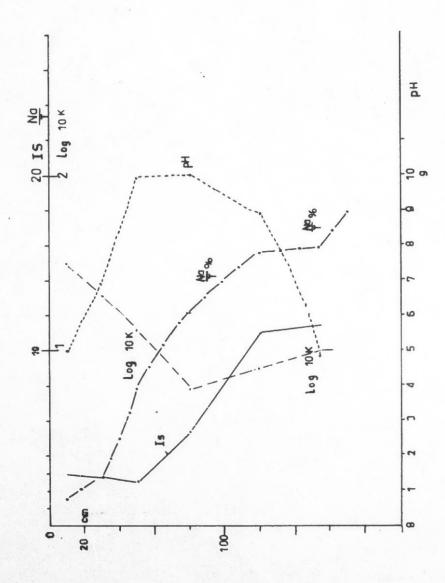
En profondeur la même structuré continue parfois devenant fondue lorsque la base du profil est fraiche (même après une période sèche comme en 1967).

Le test de l'instabilité structurale et le percelation (méthode Hemin et Monnier) appliqué à des échantillons remaniés des différents horisons nous a foursi des valeurs, qui, reportés sur le graphique génèral de correlation, montrent des regroupements asses caractéristiques qui confirmant les résultats analytiques.

Acomi les horisons supérieurs présentent à la fois une meilleure stabilité (Indice de stabilité > 50) que les horisons profonds (indice de stabilité > 50).


			THE RESERVE TO SERVE THE PARTY OF THE PARTY		The state of the s
Valour de	To at	de las	TO K W	YERSENS THAT	hori son
ARTICULAR CROS	TO GF	CHO - MANES	TA 17 MIN	The course Server	Complete annual distance

	Log IO K	, Is	d'échantillons
0 - 20 042	I,492	1 2,85	1 19
20 - 40	1,318	1 2,84	1 19
40 - 60	1,157	2,47	20
60 - IOO	0,78	5,27	20
140	0,89	10,88	8
140 - I70	0,99	11,26	1 6


Au point de vue de la structure c'est l'alcalinisation qui présente le plus de danger concernent d'une part l'instabilité des mottes vis à vis de l'eau et la perméabilité d'autre part.

Le graphique () mettent en relation les valeurs de perménbilité (log IO K) et le rapport Ma 5 des échantillons analysés pour les différents horisons illustre la limison entre l'alcaliséantion et la dissimition de la perméabilité invoquée par différents enteurs et qui se confirme dens le ces des sols de la parcelle. L'un des critères de l'alcalimination, au point de vue de la structure, retenu par R. HORDERER (), est une valeur de log IO K inférieure à I. Dans le graphique () cette valeur limite correspond à une veleur du repport Ma de IO 5. C'est cette valeur de IO 5 que sous avons adopté dans les pages précedentes comme limite de l'alcalimination alors que celle couressent adoptée et admise est de I4 5.

Reportés sur le même graphique (Mf 22) les valeurs moyennes de Is et $\frac{M_0}{2}$ % montrent une évolution parallèle, de même qu'evec le pH sauf en profondeur où $\frac{M_0}{2}$ diminition du pH est provoquée par une augmentation de la salinité. Les valeurs de log IO K varient en sens inverse. Il est asses remarquable que les valeurs de log IO K les plus faibles (0,78) ne correspondent pas aux valeurs de $\frac{M_0}{2}$ les plus élevées mais aux valeurs de pH les plus forts (9,07).

PIN